Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573412

RESUMO

Diabetes-associated cognitive dysfunction (DACD) has ascended to become the second leading cause of mortality among diabetic patients. Phosphoserine phosphatase (PSPH), a pivotal rate-limiting enzyme in L-serine biosynthesis, has been documented to instigate the insulin signaling pathway through dephosphorylation. Concomitantly, CD38, acting as a mediator in mitochondrial transfer, is activated by the insulin pathway. Given that we have demonstrated the beneficial effects of exogenous mitochondrial supplementation on DACD, we further hypothesized whether astrocytic PSPH could contribute to improving DACD by promoting astrocytic mitochondrial transfer into neurons. In the Morris Water Maze (MWM) test, our results demonstrated that overexpression of PSPH in astrocytes alleviated DACD in db/db mice. Astrocyte specific-stimulated by PSPH lentivirus/ adenovirus promoted the spine density both in vivo and in vitro. Mechanistically, astrocytic PSPH amplified the expression of CD38 via initiation of the insulin signaling pathway, thereby promoting astrocytic mitochondria transfer into neurons. In summation, this comprehensive study delineated the pivotal role of astrocytic PSPH in alleviating DACD and expounded upon its intricate cellular mechanism involving mitochondrial transfer. These findings propose that the specific up-regulation of astrocytic PSPH holds promise as a discerning therapeutic modality for DACD.

2.
Cell Commun Signal ; 21(1): 357, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102662

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) induced diabetes-associated cognitive dysfunction (DACD) that seriously affects the self-management of T2DM patients, is currently one of the most severe T2DM-associated complications, but the mechanistic basis remains unclear. Mitochondria are highly dynamic organelles, whose function refers to a broad spectrum of features such as mitochondrial dynamics, mitophagy and so on. Mitochondrial abnormalities have emerged as key determinants for cognitive function, the relationship between DACD and mitochondria is not well understood. METHODS: Here, we explored the underlying mechanism of mitochondrial dysfunction of T2DM mice and HT22 cells treated with high glucose/palmitic acid (HG/Pal) focusing on the mitochondrial fission-mitophagy axis with drug injection, western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of caveolin-1 (cav-1) in T2DM induced mitochondrial dysfunction and synaptic alteration through viral transduction. RESULTS: As previously reported, T2DM condition significantly prompted hippocampal mitochondrial fission, whereas mitophagy was blocked rather than increasing, which was accompanied by dysfunctional mitochondria and impaired neuronal function. By contrast, Mdivi-1 (mitochondrial division inhibitor) and urolithin A (mitophagy activator) ameliorated mitochondrial and neuronal function and thereafter lead to cognitive improvement by inhibiting excessive mitochondrial fission and giving rise to mitophagy, respectively. We have previously shown that cav-1 can significantly improve DACD by inhibiting ferroptosis. Here, we further demonstrated that cav-1 could not only inhibit mitochondrial fission via the interaction with GSK3ß to modulate Drp1 pathway, but also rescue mitophagy through interacting with AMPK to activate PINK1/Parkin and ULK1-dependent signlings. CONCLUSIONS: Overall, our data for the first time point to a mitochondrial fission-mitophagy axis as a driver of neuronal dysfunction in a phenotype that was exaggerated by T2DM, and the protective role of cav-1 in DACD. Graphic Summary Illustration. In T2DM, excessive mitochondrial fission and impaired mitophagy conspire to an altered mitochondrial morphology and mitochondrial dysfunction, with a consequent neuronal damage, overall suggesting an unbalanced mitochondrial fission-mitophagy axis. Upon cav-1 overexpression, GSK3ß and AMPK are phosphorylated respectively to activate Drp1 and mitophagy-related pathways (PINK1 and ULKI), ultimately inhibits mitochondrial fission and enhances mitophagy. In the meantime, the mitochondrial morphology and neuronal function are rescued, indicating the protective role of cav-1 on mitochondrial fission-mitophagy axis. Video Abstract.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doenças Mitocondriais , Humanos , Camundongos , Animais , Mitofagia , Dinâmica Mitocondrial/genética , Diabetes Mellitus Tipo 2/complicações , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Disfunção Cognitiva/etiologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Exp Mol Med ; 55(11): 2417-2432, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907746

RESUMO

Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Humanos , Camundongos , Animais , Microglia/metabolismo , Frutose/metabolismo , Disfunção Cognitiva/etiologia , Encéfalo/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo
4.
Geriatr Gerontol Int ; 23(11): 817-829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822092

RESUMO

AIM: Functional disability is a widespread challenge faced by the older population in China, where those with functional disabilities demand greater healthcare and geriatric services. This study performs a longitudinal analysis examining the effects of physiological conditions, intra-, and extra-individual factors, and life-course socioeconomic status risk factors on the disability levels and change rates of functional disability trajectories in old age. METHODS: Data for this study came from the four waves of the China Health and Retirement Longitudinal Survey. A latent growth model was used to analyze the functional disability of 5044 older adults aged 60 and over in 2011 who survived to 2018. RESULTS: Pathologies are closely associated with functional disability trajectories, and higher numbers of comorbidities relate to more disabilities. Risk factors and intra- and extra-individual factors affect functional disability trajectories and work through independent and shared mechanisms. The effects of risk factors can be traced to childhood conditions, and higher childhood and adulthood socioeconomic status is related to fewer functional disabilities. CONCLUSION: Functional disability trajectories are dynamic processes related to pathologies, intra-, and extra-individual factors, and life-course risk factors, and thus prevention and control measures should focus on both childhood and adulthood. Promoting working in later life and improving childhood socioeconomic status deserve prompt attention. Geriatr Gerontol Int 2023; 23: 817-829.


Assuntos
Pessoas com Deficiência , Humanos , Pessoa de Meia-Idade , Idoso , Criança , Aposentadoria , Classe Social , Estudos Longitudinais , China/epidemiologia
5.
EBioMedicine ; 93: 104653, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329577

RESUMO

BACKGROUND: Dementia is a serious complication in patients with diabetes-associated cognitive dysfunction (DACD). In this study, we aim to explore the protective effect of exercise on DACD in diabetic mice, and the role of NDRG2 as a potential guarder for reversing the pathological structure of neuronal synapses. METHODS: Seven weeks of standardized exercise at moderate intensity was carried out using an animal treadmill in the vehicle + Run and STZ + Run groups. Based on quantitative transcriptome and tandem mass tag (TMT) proteome sequencing, weighted gene co-expression analysis (WGCNA) and gene set enrichment analysis (GSEA) were used to investigate the activation of complement cascades to injury neuronal synaptic plasticity. Golgi staining, Western blotting, immunofluorescence staining, and electrophysiology were used to verify the reliability of sequencing data. The role of NDRG2 was assessed by overexpressing or inhibiting the NDRG2 gene in vivo. Moreover, we estimated the cognitive function in diabetic or normal patients using DSST scores. FINDINGS: Exercise reversed the injury of neuronal synaptic plasticity and the downregulation of astrocytic NDRG2 in diabetic mice, which succeeded in attenuating DACD. The deficiency of NDRG2 aggravated the activation of complement C3 by accelerating the phosphorylation of NF-κB, ultimately leading to synaptic injury and cognitive dysfunction. Conversely, the overexpression of NDRG2 promoted astrocytic remodeling by inhibiting complement C3, thus attenuating synaptic injury and cognitive dysfunction. Meanwhile, C3aR blockade rescued dendritic spines loss and cognitive deficits in diabetic mice. Moreover, the average DSST score of diabetic patients was significantly lower than that of non-diabetic peers. Levels of complement C3 in human serum were elevated in diabetic patients compared to those in non-diabetic patients. INTERPRETATION: Our findings illustrate the effectiveness and integrative mechanism of NDRG2-induced improvement of cognition from a multi-omics perspective. Additionally, they confirm that the expression of NDRG2 is closely related to cognitive function in diabetic mice and the activation of complement cascades accelerated impairment of neuronal synaptic plasticity. NDRG2 acts as a regulator of astrocytic-neuronal interaction via NF-κB/C3/C3aR signaling to restore synaptic function in diabetic mice. FUNDING: This study was supported by the National Natural Science Foundation of China (No. 81974540, 81801899, 81971290), the Key Research and Development Program of Shaanxi (Program No. 2022ZDLSF02-09) and Fundamental Research Funds for the Central Universities (Grant No. xzy022019020).


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Humanos , Camundongos , Animais , NF-kappa B/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Complemento C3 , Reprodutibilidade dos Testes , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Proteínas Supressoras de Tumor
6.
Autophagy ; 19(10): 2639-2656, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204119

RESUMO

Neuroinflammation caused by microglial activation and consequent neurological impairment are prominent features of diabetes-associated cognitive impairment (DACI). Microglial lipophagy, a significant fraction of autophagy contributing to lipid homeostasis and inflammation, had mostly been ignored in DACI. Microglial lipid droplets (LDs) accumulation is a characteristic of aging, however, little is known about the pathological role of microglial lipophagy and LDs in DACI. Therefore, we hypothesized that microglial lipophagy could be an Achilles's heel exploitable to develop effective strategies for DACI therapy. Here, starting with characterization of microglial accumulation of LDs in leptin receptor-deficient (db/db) mice and in high-fat diet and STZ (HFD/STZ) induced T2DM mice, as well as in high-glucose (HG)-treated mice BV2, human HMC3 and primary mice microglia, we revealed that HG-dampened lipophagy was responsible for LDs accumulation in microglia. Mechanistically, accumulated LDs colocalized with the microglial specific inflammatory amplifier TREM1 (triggering receptor expressed on myeloid cells 1), resulting in the buildup of microglial TREM1, which in turn aggravates HG-induced lipophagy damage and subsequently promoted HG-induced neuroinflammatory cascades via NLRP3 (NLR family pyrin domain containing 3) inflammasome. Moreover, pharmacological blockade of TREM1 with LP17 in db/db mice and HFD/STZ mice inhibited accumulation of LDs and TREM1, reduced hippocampal neuronal inflammatory damage, and consequently improved cognitive functions. Taken together, these findings uncover a previously unappreciated mechanism of impaired lipophagy-induced TREM1 accumulation in microglia and neuroinflammation in DACI, suggesting its translational potential as an attractive therapeutic target for delaying diabetes-associated cognitive decline.Abbreviations: ACTB: beta actin; AIF1/IBA1: allograft inflammatory factor 1; ALB: albumin; ARG1: arginase 1; ATG3: autophagy related 3; Baf: bafilomycin A1; BECN1: beclin 1, autophagy related; BW: body weight; CNS: central nervous system; Co-IP: co-immunoprecipitation; DACI: diabetes-associated cognitive impairment; DAPI: 4',6-diamidino-2-phenylindole; DGs: dentate gyrus; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified Eagle's medium; DSST: digit symbol substitution test; EDTA: ethylenedinitrilotetraacetic acid; ELISA: enzyme linked immunosorbent assay; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; HG: high glucose; IFNG/IFN-γ: interferon gamma; IL1B/IL-1ß: interleukin 1 beta; IL4: interleukin 4; IL6: interleukin 6; IL10: interleukin 10; LDs: lipid droplets; LPS: lipopolysaccharide; MAP2: microtubule associated protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MWM: morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3: NLR family pyrin domain containing 3; NOS2/iNOS: nitric oxide synthase 2, inducible; NOR: novel object recognition; OA: oleic acid; PA: palmitic acid; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PLIN2: perilipin 2; PLIN3: perilipin 3; PS: penicillin-streptomycin solution; RAPA: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RELA/p65: RELA proto-oncogene, NF-kB subunit; ROS: reactive oxygen species; RT: room temperature; RT-qPCR: Reverse transcription quantitative real-time polymerase chain reaction; STZ: streptozotocin; SQSTM1/p62: sequestosome 1; SYK: spleen asociated tyrosine kinase; SYP: synaptophysin; T2DM: type 2 diabetes mellitus; TNF/TNF-α: tumor necrosis factor; TREM1: triggering receptor expressed on myeloid cells 1; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.


Assuntos
Autofagia , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Autofagia/fisiologia , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
7.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611988

RESUMO

The prevalence of diabetes-associated cognitive dysfunction (DACD) has increased to 13.5%. Dementia, as the most severe DACD, is the second leading cause of death in patients with diabetes mellitus. Hence, the potential mechanisms of DACD for slowing or halting its progression need to be urgently explored. Given that the sigma-1 receptor (Sig-1R), a chaperone protein located in the endoplasmic reticulum (ER)-mitochondrion contact membranes to regulate ER stress (ERS), is associated with cognitive outcomes in neurodegenerative diseases, this study aimed to investigate the role of astrocytic Sig-1R in DACD and its underlying mechanism. Here, we examined the levels of ERS and complement component 3/3a (C3/C3a) from primary astrocytes with different concentrations of glucose and treatment. Subsequently, HT22 neurons were cultured in different astrocyte-conditioned medium, and the expression of synaptic proteins was detected. We constructed type 1 diabetes mellitus (T1DM) model to evaluate the astrocytic Sig-1R mechanism on synapse and cognitive function changes. In vitro, high glucose concentration downregulated Sig-1R and aggravated ERS in astrocytes, resulting in synapse deficits. PRE-084, a high-affinity and selective Sig-1R agonist, inhibited astrocytic ERS and complement cascades and restored synaptic damage, while the Sig-1R antagonist displayed the opposite results. Moreover, C3a receptor antagonist (C3aRA) could mimic the effect of PRE-084 and exerted neuroprotective effects. In vivo, PRE-084 substantially reduced ER-mitochondrion contact, activation of ERS, and C3/C3a secretion in mice with T1DM. Additionally, the synaptic loss and neurobehavioral dysfunction of mice with T1DM were less pronounced in both the PRE-084 and C3aRA treatment groups. These findings demonstrated that Sig-1R activation reduced the astrocytic ER-mitochondrion contact, ERS activation, and complement-mediated synaptic damage in T1DM. This study suggested the mechanisms and potential therapeutic approaches for treating DACD.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 1 , Camundongos , Animais , Astrócitos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Fatores de Proteção , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Disfunção Cognitiva/metabolismo
9.
Mol Med ; 28(1): 137, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401163

RESUMO

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Assuntos
Ligante de CD40 , Sepse , Humanos , Camundongos , Animais , Ocludina/metabolismo , Ligante de CD40/metabolismo , Células CACO-2 , S-Nitrosoglutationa/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , RNA Interferente Pequeno , Meios de Cultivo Condicionados/metabolismo , Ativação Plaquetária , Sepse/metabolismo , Neuroglia/metabolismo , Proteínas de Junções Íntimas/metabolismo
10.
Mol Med ; 28(1): 127, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303116

RESUMO

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Assuntos
Ligante de CD40 , Sepse , Humanos , Camundongos , Animais , Ligante de CD40/metabolismo , Células CACO-2 , Ocludina/metabolismo , S-Nitrosoglutationa/metabolismo , RNA Interferente Pequeno , Fator 6 Associado a Receptor de TNF/metabolismo , Meios de Cultivo Condicionados , Ativação Plaquetária , Sepse/metabolismo , Neuroglia/metabolismo , Proteínas de Junções Íntimas/metabolismo
11.
Antioxid Redox Signal ; 37(13-15): 867-886, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35350885

RESUMO

Aims: Iron metabolism is involved in many biological processes in the brain. Alterations in iron homeostasis have been associated with several neurodegenerative disorders. Instead of stroke and ischemic heart disease, dementia has become the second leading cause of mortality among the type 2 diabetes mellitus (T2DM) population. Therefore, we attempted to investigate the role of ferroptosis in diabetes-associated cognitive dysfunction (DACD). Results: We evaluated ferroptosis hallmarks in the hippocampus of T2DM (high-fat diet/streptozotocin, HFD/STZ) mice, primary hippocampal neurons, as well as in the blood of patients. The results of Gene Set Enrichment Analysis showed significantly differentially expressed genes related to ferroptosis-related pathways between normal control (db/m) and leptin receptor-deficient (db/db) mice. Here, ferroptosis, mitochondrial dysfunction and cognitive impairment were revealed, and caveolin-1 (cav-1) was significantly downregulated in the hippocampus of T2DM (HFD/STZ) mice. In addition, ferrostatin-1 and cav-1 restoration neutralized ferroptosis-related symbolic changes, mitochondrial dysfunction, and improved cognitive dysfunction. Notably, the plasma levels of Fe2+ and 4-hydroxynonenal (4-HNE) in T2DM patients showed a tendency to increase compared with those in nondiabetic subjects, and the Fe2+ level was negatively correlated with the cognitive ability in T2DM subjects. Innovation: For the first time, this study suggested that ferroptosis promoted the progression of DACD induced by T2DM both in vivo and in vitro, and supported the clinical evidence for the correlation between ferroptosis and T2DM-related DACD, which provided new insights into the potential antioxidant effects of ferroptosis inhibitors and cav-1 on DACD. Conclusions: The overexpression of cav-1 may attenuate DACD by modulating neuronal ferroptosis-mediated mitochondrial homeostasis. We put cav-1 on the spotlight as a promising candidate to prevent DACD. Antioxid. Redox Signal. 37, 867-886.


Assuntos
Caveolina 1 , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Camundongos , Caveolina 1/genética , Caveolina 1/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Ferro/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Diabetes Mellitus Experimental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...